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Dynamic Auctions for On-Demand Services
Enrique Campos-Náñez, Natalia Fabra, and Alfredo Garcia

Abstract—In this paper, we consider a market in which a finite
number of firms compete in prices for the incoming demand for
service. Upon every customer arrival, an independent auctioneer
gathers bids from each one of the competing queuing systems
and assigns the incoming customer to the system that submitted
the lowest bid. We provide a simple characterization of Markov
Perfect equilibrium in terms of “indifference prices,” i.e., price
levels at which players are indifferent between committing avail-
able capacity or withholding it. We identify sufficient conditions
for socially efficient performance in equilibrium.

Index Terms—Auctions, dynamic games, Markov Perfect equi-
librium (MPE), queuing systems.

I. INTRODUCTION

THE PERVASIVE nature of information technology (IT) in
modern economies has inevitably changed the underlying

structure through which economic transactions take place. As
electronic commerce emerges as a viable retail channel, many
firms have begun experimenting with alternative trading mech-
anisms such as auctions, guaranteed-purchase contracts, group
purchasing, etc. These new trading mechanisms offer unprece-
dented opportunities in improving the operational efficiency of
capacity-constrained industries. Typically, the online trader or
auctioneer is a “retail consolidator,” i.e., a firm that either buys
cheaply, in advance, major blocks of capacity (e.g., airline seats
or hotel rooms) or has access to a surplus inventory of deeply
discounted capacity to be traded at possibly marked-up prices.
Often, retail consolidators or aggregators sell available capacity
“on-demand,” i.e., an auction (or other trading mechanism) is
launched upon request by a potential customer. In more tradi-
tional retail channels, potential customers incur “search” costs
in obtaining and processing information about available prices.
Similarly, sellers face costs associated with advertising, labor,
etc., which is typical of traditional retail activities. By relying
on “retail consolidators” and their chosen trading mechanisms,
firms can adequately price-in installed capacity while being
able to focus on their core business competency. Customers
may also save on the information-search costs since the more
successful online trading sites are exactly those that develop
a reputation for enabling better price discovery. To summa-
rize, on-demand trading has the potential to lower transaction
costs and to enable better tracking between market prices and
available capacity.
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Our interest in auction-based mechanisms for on-demand
service is also motivated by recent proposals for the implemen-
tation of a new paradigm known as “utility” computing. This
label is generally used to refer to various schemes in which the
computing resources of possibly different firms or “application-
service providers” are pooled in order to be allocated and priced
upon customer request. It is believed that the utility-computing
paradigm would induce a more efficient exploitation of the ex-
isting IT infrastructure. In addition, by outsourcing IT services
on-demand, small users avoid the substantial investment costs
associated with owning and operating a separate IT division
within their organizations.

In this paper, we explore the foundations of a theoretical
model that captures many relevant features of an auction-based
structure for on-demand trading of homogeneous services.
Specifically, we consider a market in which a finite number
of firms compete in prices for attending incoming demand for
service. Each firm owns a queuing system (server with finite
buffer) to provide the service. These queuing systems operate
in parallel and, upon every customer arrival, an independent
auctioneer gathers bids from each one of the competing queuing
systems and assigns the incoming customer to the system that
submitted the lowest bid.

Since only prices (and not capacity) can be updated in
the short-run, we focus our attention on strategic pricing. In
particular, we characterize the opportunity costs associated to
committing available capacity at a given point in time. These
opportunity costs are strategic in that they depend not only upon
a firm’s available capacity at a given point in time but also on
competitors’ available capacity and the way these competitors
price in scarcity. Opportunity costs are also dynamic in that they
depend on the “state” of the available capacity in the system.
Hence, this setting is not one of repeated auctions but one of
dynamic auctions since the underlying opportunity costs that
the players are facing vary over time.

The structure of the paper is as follows. In Section II,
we briefly review the related literature. In Sections III and
IV, we introduce the basic setup and the notion of Markov
Perfect equilibrium (MPE). In Section V, we give a simple
characterization of equilibrium in terms of “indifference
prices,” i.e., price levels at which players are indifferent
between committing available capacity or withholding it. In
Section VI, we study conditions under which systemwide
performance in equilibrium is efficient.

II. LITERATURE REVIEW

Our analysis is related to two strands of the literature: The
literature that analyzes strategic behavior in queuing systems
and the auction literature.

The literature on strategic behavior in queuing systems
has been recently surveyed in [3]. In the pioneering work of
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Naor [13], arriving customers are assumed to be able to choose
whether to join or leave, depending on their expected disutility
of delay. A congestion externality is, therefore, characterized as
the increased delay due to other users’ utilization of the service
facility. If a customer enters the service system, then other
customers may have to wait longer. Naor’s work introduced
the use of congestion-pricing methods to alleviate the harmful
effects of the congestion externality. Notable extensions to
Naor’s work can be found in [9] and [12].

Our analysis departs from this line of work in that we
are interested in modeling competition among servers. On a
chapter of their recent survey, [3, Ch. 8] provide a review of
published literature on competition among servers. Some pa-
pers (see [5] and [7]) model nonprice competition (e.g., com-
petition in service rates), while a few others, such as [8], study
how delay costs affect both prices and operating policies. In all
of these papers, firms maximize average reward. Consequently,
equilibrium analysis is firmly grounded on (long-run) average
reward and costs functions.

Our analysis differs substantially from the aforementioned
papers in that, in our model, firms do account for the time
value of money when evaluating their decisions. Consequently,
the short-run performance of their queuing systems defines
total discounted profits. Thus, while models that assume firms
maximize average reward may be better suited to evalu-
ate the long-run effects of, for example, installed capacity
and/or service rates, models with discounted profit capture the
need for dynamically adjusted prices to account for varying
opportunity costs.

This paper is also related to the auction literature (see [6] for
a complete survey of the auction literature). Most auction mod-
els start by asserting assumptions on the valuation structure of
bidders. In our setting, players’ valuations are not independent,
as they are endogenously determined as a result of market in-
teraction. Endogenous valuations arise because players’ profits
are interrelated across periods through costs, i.e., since buffer
sizes are limited, serving the current customer may imply an
infinite cost of serving the next incoming customer, and through
prices. The prices that the rivals will be willing to charge to the
future incoming customers will depend on whether their servers
are idle or busy and on how they anticipate future customers
will be allocated among players. However, we assume that,
given a pricing strategy, every player is able to determine the
opportunity costs of his/her opponents. In this sense, our model
is one with complete information but endogenous valuations.

Finally, this paper is related to another strand in the literature
on load balancing and scheduling for computer-based services
(see [2] and [15]).

III. SETUP

We now present the basic setup for price-based competition
among queuing systems.
A.1) We assume that customers arrive according to a Poisson

process with rate λ. The service tasks requested by in-
coming customers are homogeneous and their willingness
to pay, which we shall denote by v, is deterministic. There
are n parallel queues (server plus buffer) owned by n
different players. We shall denote by µi and Ki, the mean
service rate (assuming service times are independently

identically distributed and exponentially distributed) and
buffer capacity of player i’s queue. The above summa-
rized structure is assumed to be common knowledge.

A.2) Auctions take place every time customers arrive. Given
that arrivals constitute a Poisson process, the probability
that two or more consumers arrive at the same time
is zero. Hence, when an auction takes place, players
will be bidding to service one customer only. Bids can
take any value in [0, v] and players with full buffer are
not allowed to bid in.1 Given the bids by players b =
(b1, b2, . . . , bn) ∈ B = Πi[0, v], we shall denote by b[k]

the kth lowest bid, where [k] represents the index of the
player submitting that bid. The winner of the auction will
be the one that submitted the lowest bid (in case of a
tie among the players with the lowest bids, the index
[1] is randomly assigned to one of them). The price for
the service p∗(b) will be set at the second lowest bid.
Formally, player’s i demand Di(b) and the service price
are defined as follows:

Di(b) =
{

1, if bi = b[1]
0, otherwise

where ties are randomly broken in case several players
bid b[1]. In addition

p∗(b) =
{

b[2], if [2] �= ∅

b[1], otherwise.

The assumption that customers are not sensitive to service
quality will be revisited in Section VII.

A.3) The “state” of the system is the number of cus-
tomers at each buffer. The state space is therefore X =∏n

i=1{0, 1, 2, . . . ,Ki}. Players have complete informa-
tion about the state of the system.

A. Stationary Markovian Pricing Strategies

We shall restrict our attention to Markovian pricing strate-
gies, i.e., strategies where bids are a function of the current
state of the system. Moreover, we are interested in stationary
(i.e., time invariant) strategies.

For each player i, a pure Markovian pricing strategy is
denoted by the mapping πi : X �→ [0, v]. A Markovian strategy
combination, π = (π1, π2, . . . , πn), is a vector of Markovian
pricing strategies for each player. We let Π ⊆ (X × [0, v])n

represent the set of all Markovian (pure) strategy combinations.
Let us denote by rπ

i (x) the player i’s expected payoff in the
auction played when the state of the system is x and players
follow strategy combination π, i.e.,

rπ
i (x) = p∗ (π(x))Di (π(x)) .

We limit our interest to the times at which a new customer
arrives. Given that a customer just arrived and conditional
upon the next customer arrival occurring after t units of time,
we shall denote by Qπ,t the one-step transition probabil-
ity matrix. Specifically, given states x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) ∈ X , the probability of transitioning from

1This assumption could be rationalized as follows: if large penalties for
defaulting on the auction outcome are implemented, players with full buffer
will abstain from bidding.
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x to y, given that the next arrival will occur at time t and that
the prices prescribed by the strategy π are used, is given by

Qπ,t(x, y) =
n∏

i=1

Qπ,t
i (x, yi)

where Qπ,t
i ∈ �|X |×Ki is a matrix in which the (x, yi)th entry

defines the probability of transitioning from state x to any state
whose ith component is yi, i.e.,

Qπ,t
i (xi, yi) =

{
Q̄t

i(xi, yi), if Di (π(x)) = 1
Qt

i
(xi, yi), otherwise

and Q̄t
i is the transition-probability matrix for player i’s state

variable, if at present time, he/she is to attend the current
customer conditioned on the next customer arriving after t units
of time, i.e.,

Q̄t
i(xi, yi) =




0, if yi > xi + 1
e−µit (µit)

(xi−yi+1)

(xi−yi+1)! , if 0 < yi ≤ xi + 1∑
l>xi

e−µit (µit)
l

l! , if yi = 0

and Qt
i

is the one-step transition probability vector for player
i’s state variable, if at present time, he/she is not to attend the
current customer, and the next customer arrives after t time
units, i.e.,

Qt
i
(xi, yi) =




0, if yi ≥ xi + 1
e−µit (µit)

(xi−yi)

(xi−yi)!
, if 0 < yi ≤ xi∑

l≥xi
e−µit (µit)

l

l! , if yi = 0 .

With this notation in hand, the value function is denoted by
the mapping V π,t : X �→ Rn and can be recursively defined as
follows:

V π,t
i = rπ

i + e−ρtQπ,tV π
i

where rπ
i is the immediate reward, the term e−ρtQπ,tV π

i is the
expected (discounted) continuation reward, and V π

i = E[V π,t].
1) Example 1—Computing the Transition-Probability

Matrix: Suppose that there are n = 2 parallel queues (server
plus buffer) owned by the two different players. Each server
has exponential service rate µ and buffer capacity of one.
Thus, for i = 1, 2

Q̄t
i =




1 − e−µt e−µt 0∑
k>1

e−µt (µt)k

k! e−µt(µt) e−µt

∑
k>1

e−µt (µt)k

k! e−µt(µt) e−µt




Qt
i
=




1 0 0∑
k>0

e−µt (µt)k

k! e−µt 0∑
k>1

e−µt (µt)k

k! e−µt(µt) e−µt


 .

B. Valuation

Let Mi ⊂ X be defined as Mi = {x ∈ X |xi < Ki}. In the
following discussion, we restrict our attention to stationary

Markovian pricing strategies πi in the reduced domain Mi, i.e.,
πi : Mi ⊂ X �→ [0, v]. This is done with no loss of generality,
since, at every stage game, players with a full buffer capacity
(i.e., xi = Ki) will not participate in the next auction.

If players are assumed to follow a Markovian pricing policy
π, from an individual perspective, each player is faced at each
state with the choice between selling one unit of capacity at the
given price or withholding one unit of capacity. In order to com-
pute the optimal response, we solve the dynamic programming
recursive equations conditional upon the next customer arrival
occurring in t units of time. For x ∈ Mi and bi ∈ [0, v], we have

V̂ π,t
i (x; b) = p∗ (bi, π−i(x))Di (bi, π−i(x))

+ e−ρt
∑
x′∈X

Qπ,t(x, x′)V̂ π
i (x′) (1)

V̂ π
i (x) = sup

0≤bi≤v
E

[
V̂ π,t

i (x; bi)
]

(2)

where (bi, π−i(x)) stands for the strategy combination that
equals π, except at state x, where player i bids bi.

Equation (1) determines the value of selling today at the
given prices (by bidding bi). Equation (2) summarizes the value
of today’s best decision.

IV. MARKOV PERFECT EQUILIBRIUM

We are interested in the Markovian strategy combinations
that have the following property: At every time period, for
any given state, no player can do strictly better by choosing
a different price than the one prescribed by the strategy combi-
nation under consideration. This concept formalizes a notion of
recursive rationality, i.e., play prescribed by the strategies from
any state off the equilibrium path must also be in equilibrium
(see [1]). As a refinement of Nash equilibrium, this solution
concept filters out all “noncredible” Nash equilibria, i.e., those
equilibrium strategies supported upon the basis of irrational
play off the equilibrium path. In light of this, the MPE solution
concept has more predictive power than Nash equilibrium. As
argued in [10], a second advantage of MPE pertains to the sim-
plicity of Markovian strategies, which substantially reduces the
number of parameters to be estimated in dynamic econometric
models.

Formally, a strategy combination π∗ is an MPE, if and only
if, for every player i and every state x∈X

V π∗

i (x) ≥ V
(πi,π

∗
−i)

i (x)

for all πi �= π∗
i , where (πi, π

∗
−i) is the strategy combination

with player i bidding according to πi (instead of π∗
i ).

A. Indifference Prices

To characterize players’ best replies for a given strategy
combination π, we now introduce the notion of indifference
prices. Given state x and conditional upon the next customer
arrival occurring in t units of time, we shall denote it by p̃π,t

i (x).
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Definition 1: The indifference price map p̃π,t
i (x) : Π ×

X �→ [0, v] is such that

p̃π,t
i (x) + e−ρt

∑
x′∈X

Q̄t
i (xi, x

′
i)Q

t
−i

(x, x′)V̂ π
i (x′)

= e−ρt
∑
x′∈X

Qt
i
(xi, x

′
i)Q

π,t
−i (x, x′)V̂ π

i (x′)] (3)

where Qt
−i

(x, x′) =
∏n

j=1
j �=i

Qt
j
(xj , x

′
j), and Qπ,t

−i (x, x′) =∏n
j=1
j �=i

Qπ,t
j (xj , x

′
j).

The indifference price for player i is the price that equates the
value obtained by selling one unit of buffer capacity today [left-
hand side in (3)] and withholding that unit for future revenue
[right-hand side in (3)]. We remark that p̃π,t

i (x) is nonnegative.
By withholding capacity, a firm ensures that its buffer capacity,
next time a customer arrives, will be greater than if it had served
the current customer. Since withholding capacity by a given
firm causes its rivals to use up their capacity, rivals’ buffers
will be less (next time a customer arrives) than if that firm
were to serve the current customer. Since a firm’s value rises as
its available capacity increases and rivals’ capacities decrease,
it must hold that the future value associated with withholding
is greater than (or equal to) the future value associated with
selling. In addition, p̃π,t

i (x) ≤ v since the difference in per unit
value between selling and withholding cannot exceed v.

Lastly, the expected indifference prices are denoted

p̃π
i (x) = E

[
p̃π,t

i (x)
]
. (4)

1) Example 2—Computing the Indifference Prices: Sup-
pose that there are two parallel queues owned by two different
players. Each server has exponential service rate µ and no
buffer capacity. Further assume that consumers’ willingness to
pay is deterministic and equal to v.

In states (1, 0) or (0, 1), when only one of the servers is avail-
able, the “available” player has monopoly power. Consequently,
dynamic pricing strategies in equilibrium must set prices (for
the “available” player) equal to v. The only nontrivial pricing
decision is associated with state (0, 0), i.e., both servers are idle.
Assuming that equilibrium pricing strategies are symmetric, we
denote by V (x1, x2) the value function for player 1 when the
state of the system is (x1, x2) under the (symmetric) equilib-
rium pricing strategy.

Conditional upon the next customer arrival occurring in t
units of time, the value function for player 1 when both servers
are busy V t(1, 1) satisfies the following equation:

V t(1, 1) = e−ρt
[
(1 − e−µt)2V (0, 0) + (1 − e−µt)e−µt

× [V (0, 1) + V (1, 0)] + e−2µtV (1, 1)
]
. (5)

Given that both servers are busy, there are no immediate
payoffs but only future expected payoffs that are discounted
e−ρ·t. The expectation of future payoffs is obtained after con-
sidering the four possible transitions: Service times for both
busy servers are less than the interval length t, thus the system
state transitions to (0, 0); service time for one server is less
than t, while the other server’s service time exceeds t, hence,
the transitions to asymmetric states (0, 1) and (1, 0); and lastly,

service times for both busy servers exceed interval length t, thus
the system state reverts to (1, 1).

It is easy to see that the value function for player 1 when its
server is busy while that of player 2 is available, V t(1, 0) is
equal to V t(1, 1), as there are no immediate payoffs to be made
out of the current customer. Hence

V t(1, 0) = V t(1, 1). (6)

When player 1’s server is available while player 2’s is busy,
player 1 earns a monopoly rent v on the current customer as it
faces no competition from its rival. Hence

V t(0, 1) = v + V t(1, 1). (7)

Lastly, when both servers are idle, player 1 would be indif-
ferent between providing service at a price p̃t(0, 0) or waiting
(withholding capacity) if the following condition holds:

p̃t(0, 0) + e−ρt
[
e−µtV (1, 0) + (1 − e−µt)V (0, 0)

]
= e−ρt

[
e−µtV (0, 1) + (1 − e−µt)V (0, 0)

]
.

Thus

p̃t(0, 0) = e−(ρ+µ)t [V (0, 1) − V (1, 0)] .

From (6) and (7), we obtain

p̃t(0, 0) = e−(ρ+µ)tv.

The expected value is

p̃(0, 0) =E
[
p̃t(0, 0)

]
=

∞∫
0

e−(ρ+µ)tv∗λe−λtdt

=
λ

ρ + µ + λ
v.

V. CHARACTERIZATION, EXISTENCE,
AND COMPUTATION OF MPE

Theorem 1: A strategy combination of the form πi(x) =
p̃π

i (x), for all i and x ∈ X , is an MPE.
Proof: We first show that bidding bi < p̃π

i (x) is weakly
dominated by simply bidding p̃π

i (x). This deviation has two
possible implications.

1) If at state x, given bids (bi, π−i), player i is the lowest
bidder and the second lowest bid is below player i’s
indifference price, i.e., p∗(bi, π−i) < p̃π

i (x), then player
i’s expected payoff is

p∗(bi, π−i(x)) + E

[
e−ρt

∑
x′∈X

Q̄t
i (xi, x

′
i)Q

t
−i

(x, x′)V̂ π
i (x′)

]
.

(8)

On the other hand, if player i had bid at his expected
indifference price, his expected payoff would have
simply been

E

[
e−ρt

∑
x′∈X

Qt
i
(xi, x

′
i)Q

π,t
−i (x, x′)V̂ π

i (x′)

]
. (9)
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In the light of (3) and (4)

p∗ (bi, π−i(x))+E

[
e−ρt

∑
x′∈X

Q̄t
i (xi, x

′
i)Q

t
−i

(x, x′)V̂ π
i (x′)

]

≤p∗ (π(x))+E

[
e−ρt

∑
x′∈X

Q̄t
i (xi, x

′
i)Q

t
−i

(x, x′)V̂ π
i (x′)

]

=E

[
e−ρt

∑
x′∈X

Qt
i
(xi, x

′
i)Q

π,t
−i (x, x′)V̂ π

i (x′)

]
.

Hence, (8) does not exceed (9). In other words, player i
would have been better off bidding his indifference price.

2) If by bidding bi < p̃π
i (x), player i is the lowest bidder

and the second lowest bidder is bidding above player i’s
indifference price, player i would have been equally well-
off bidding at his indifferent price. Similarly, if by bidding
bi < p̃π

i (x) player i is not the lowest bidder, here again,
player i would have been equally well-off bidding at his
indifferent price.

Second, we show that bidding bi > p̃π
i (x) is weakly domi-

nated by bidding his indifference price. If, at state x, the vector
of bids (bi, π−i) is such that player i is not the lowest bidder,
player i’s expected payoff is

E

[
e−ρt

∑
x′∈X

Qt
i
(xi, x

′
i)Q

π,t
−i (x, x′)V̂ π

i (x′)

]
(10)

whereas if player i had bid at his expected indifference price,
his expected payoff would have been

p∗(π(x))+E

[
e−ρt

∑
x′∈X

Q̄t
i (xi, x

′
i)Q

t
−i

(x, x′)V̂ π
i (x′)

]
. (11)

Again, in the light of (4) and the fact that p̃π
i (x) ≤ p∗(π(x))

E

[
e−ρt

∑
x′∈X

Qt
i
(xi, x

′
i)Q

π,t
−i (x, x′)V̂ π

i (x′)

]

= p̃π
i (x)+E

[
e−ρt

∑
x′∈X

Q̄t
i (xi, x

′
i)Q

t
−i

(x, x′)V̂ π
i (x′)

]

≤ p∗(π(x))+E

[
e−ρt

∑
x′∈X

Q̄t
i (xi, x

′
i)Q

t
−i

(x, x′)V̂ π
i (x′)

]
.

Hence, (10) does not exceed (11). In other words, player i
would have been better off bidding his indifference price. �

In Theorem 1, we have shown that a strategy combination, in
which firms bid their expected indifference prices, is an MPE.
In other words, a fixed point of the expected indifference price
operation is an equilibrium. A question remains on whether
such a fixed point exists. In our next result, we show that this is
indeed the case.

Theorem 2: Assuming that n = 2, there exists a strategy
combination of the form πi(x) = p̃π

i (x) for all i and x ∈ X .
Proof: We shall prove that the expected indifference price

operator is monotone in Π∗ ⊂ [0, v]|X |×n, where

Π∗ = {π ∈ [0, v]|X |×n|πi(x′) ≥ πi(x)

for all i and x′, x ∈ X , such that, x′ ≥ x.
Let us consider the indifference prices associated with a finite

number of arrivals, for example, T . If π ≤ π′ and π, π′ ∈ Π∗, it
follows that, for fixed bi

p∗((bi, π−i(x))Di (bi, π−i(x))

≤ p∗
(
(bi, π

′
−i(x)

)
Di

(
bi, π

′
−i(x)

)
. (12)

The value associated with the last arrival is

V̂ π
i (x;T, T ) = sup

0≤bi≤v
{p∗ ((bi, π−i(x))Di (bi, π−i(x))} .

In light of (12)

V̂ π
i (x;T, T ) ≤ V̂ π′

i (x;T, T ). (13)

The value V̂ π
i (x;T − 1, T ), which is associated with the last

two arrivals, is given by the suprimum over bids bi ∈ [0, v] of

p∗ ((bi, π−i(x))Di (bi, π−i(x))

+E

[
e−ρt

∑
x′∈X

Qπ,t(x, x′)V̂ π
i (x′;T, T )

]
. (14)

In an analogous fashion to Theorem 1’s proof, it can be seen
that bidding E[p̃π,t

i (x;T − 1;T )], where

p̃π,t
i (x;T− 1, T )+e−ρt

∑
x′∈X

Q̄t
i (xi, x

′
i)Q

t
−i

(x, x′)V̂ π
i (x′;T, T )

= e−ρt
∑
x′∈X

Qt
i
(xi, x

′
i)Q

π,t
−i (x, x′)V̂ π

i (x′;T, T )

is the optimal solution to (14). Given (13), we conclude∑
x′∈X

[
Qt

i
(xi, x

′
i)Q

π,t
−i (x, x′) − Q̄t

i (xi, x
′
i)Q

t
−i

(x, x′)
]

× V̂ π
i (x′;T, T )

≤
∑
x′∈X

[
Qt

i
(xi, x

′
i)Q

π′,t
−i (x, x′)−Q̄t

i (xi, x
′
i)Q

t
−i

(x, x′)
]

× V̂ π′

i (x′;T, T ).

Or equivalently

p̃π,t
i (x;T − 1, T ) ≤ p̃π′,t

i (x;T − 1, T ).

Moreover, p̃π,t
i (x;T − 1, T ) ∈ Π∗ and

V̂ π
i (x;T − 1, T ) ≤ V̂ π′

i (x;T − 1, T ).

By finite induction, we can show that

p̃π,t
i (x; 0, T ) ≤ p̃π′,t

i (x; 0, T ).
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In the limit

p̃π,t
i (x)= lim

T→∞
p̃π,t

i (x; 0, T ) ≤ lim
T→∞

p̃π′,t
i (x; 0, T )= p̃π′,t

i (x).

Finally, the result follows by invoking Tarski’s fixed-
point theorem for the monotone map p̃π on the complete
lattice Π∗. �

Theorem 2 motivates a very simple algorithm for the com-
putation of MPE. Let π0

i (x) = v for all i and x ∈ X . The
algorithm’s basic iteration is defined as follows:

πk+1
i (x) = p̃πk

i (x).

By monotonicity, the sequence {πk : k ≥ 0} is monotone,
which is decreasing with zero as lower bound. Therefore,
there exists a limit point π∗ = limk→∞ πk. Finally, it follows
that such limit point is a fixed point of the indifference price
map, i.e.,

π∗
i (x) = p̃π∗

i (x)

for all i and x ∈ X .

A. First-Price Auction

As a corollary to Theorem 1, we consider now the case when
the auction format is slightly altered so that the auction winner
is paid according to his/her bid. In practice, the first-price
auction rule is more widely used than the second-price format.
In this setting, the player with the lowest expected indifference
price has an incentive to “undercut” the player with the second
lowest expected indifference price. We shall assume, as is
standard in the literature, that in case of bidding ties, demand
is served by the player with the lower expected indifference
price (in case of ties among players with equal indifference
prices, we shall assume that both players face an equal prob-
ability of serving demand). For a given strategy combination
of π and a given state x, the optimal “undercutting” price is
given by

pπ(x) = arg max
p≤p̃π

[2](x)

[(
p− p̃π

[1](x)
)

(1 − F (p))
]
.

Corollary 1: Given x ∈ X and π, let [k] denote the index
associated with the kth lowest expected indifference price. If π
is of the form

π[1](x) = pπ(x)

πi(x) = p̃π
i (x), i �= [1]

then π is an MPE.
Proof: By construction, the player with lowest indiffer-

ence price, i.e., p̃π
[1](x), maximizes expected markup over its

indifference price by bidding pπ(x). Since pπ(x) ≤ p̃π
[2](x), all

the other players have no incentive to deviate. �

VI. EFFICIENCY

We are interested in studying whether the MPE, which is
characterized above, induces a systemwide efficient utilization

of resources. Since an incoming customer can only be rejected
if all the buffers are busy, a systemwide efficient routing pol-
icy is one that maximizes the expected number of customers
served over an unbounded horizon. Hordijk and Koole [4] have
shown that any systemwide efficient policy has the following
structure: an arriving customer should be assigned to a faster
server when that server has a shorter queue. They refer to
this type of policy as the “Shorter Queue Faster Server Policy,
SQFSP.” As it is pointed out in [4], this characterization is
incomplete in general but sufficient whenever the servers have
identical service-time distributions. In this case, the optimal
policy follows a simple “Shortest Queue” rule, incoming cus-
tomers should be routed to the shortest queue. An applica-
tion to Hordijk and Koole’s characterization is the following
result.
Corollary 2: Assume that expected indifference prices are

monotone in buffer state, i.e.,

xi ≥ xj =⇒ p̃π
i (x) ≥ p̃π

j (x)

where πi(x) = p̃π
i (x) for all i and x ∈ X . With identical

service-time distributions, π induces a systemwide efficient
routing policy.

Nonetheless, when servers have different service-time dis-
tributions, the performance of the auction-based controlling
mechanism may be inefficient, as we shall illustrate in our next
example.
1) Example 3—MPE May not Be Efficient: Again, suppose

that there are two bufferless queues owned by two different
players and that consumers’ willingness to pay is deterministic
and equal to v. At state (1, 1), requests will be denied, while at
states (0, 1) and (1, 0), the requests will be accepted at a price v.
Therefore, the only interesting state is (0, 0). As in example 2
above, it is possible to state a set of equations for the total
discounted value for each player. We shall denote by V t

i (x1, x2)
player i’s discounted value in equilibrium when the state of the
system is (x1, x2) and the next customer arrival occurs in t units
of time

V t
1 (1, 0) = e−ρt

[
(1 − e−µ1t)(1 − e−µ2t)V1(0, 0)

+ e−(µ1+µ2)tV1(1, 1)

+ e−µ1t(1 − e−µ2t)V1(1, 0)

+ (1 − e−µ1t)e−µ2tV1(0, 1)
]

V t
1 (0, 1) = v + e−ρt

[
(1 − e−µ1t)(1 − e−µ2t)V1(0, 0)

+ e−(µ1+µ2)tV1(1, 1)

+ e−µ1t(1 − e−µ2t)V1(1, 0)

+ (1 − e−µ1t)e−µ2tV1(0, 1)
]

V t
1 (1, 1) = e−ρt

[
(1 − e−µ1t)(1 − e−µ2t)V1(0, 0)

+ e−(µ1+µ2)tV1(1, 1)

+ e−µ1t(1 − e−µ2t)V1(1, 0)

+ (1 − e−µ1t)e−µ2tV1(0, 1) ].
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Finally, we write down the equation for the indifference price
at state (0, 0)

p̃t
1(0, 0) + e−ρt

[
(1 − e−µ1t)V1(0, 0) + e−µ1tV1(1, 0)

]
= e−ρt

[
(1 − e−µ2t)V1(0, 0) + e−µ2tV1(1, 0)

]
.

Conversely, for player two, we have the following equations:

V t
2 (1, 0) = v + e−ρt

[
(1 − e−µ1t)(1 − e−µ2t)V2(0, 0)

+ e−(µ1+µ2)tV2(1, 1)

+ e−µ1t(1 − e−µ2t)V2(1, 0)

+ (1 − e−µ1t)e−µ2tV2(0, 1)
]

V t
2 (0, 1) = e−ρt

[
(1 − e−µ1t)(1 − e−µ2t)V2(0, 0)

+ e−(µ1+µ2)tV2(1, 1)

+ e−µ1t(1 − e−µ2t)V2(1, 0)

+ (1 − e−µ1t)e−µ2tV2(0, 1)
]

V t
2 (1, 1) = e−ρt

[
(1 − e−µ1t)(1 − e−µ2t)V2(0, 0)

+ e−(µ1+µ2)tV2(1, 1)

+ e−µ1t(1 − e−µ2t)V2(1, 0)

+ (1 − e−µ1t)e−µ2tV2(0, 1)
]

together with the indifference-price equation

p̃t
2(0, 0) + e−ρt

[
(1 − e−µ2t)V2(0, 0) + e−µ2tV2(1, 0)

]
= e−ρt

[
(1 − e−µ1t)V2(0, 0) + e−µ1tV2(1, 0)

]
.

At state (0, 0), the player with the lowest indifference price
wins the auction at a price equal to the highest indifference
price. If we posit that p̃t

1(0, 0) < p̃t
2(0, 0) [i.e., the winner at

state (0, 0) is player 1 and the price for service is p̃t
2(0, 0)], two

additional equations are added

V t
1 (1, 0) = p̃t

2(0, 0) + e−ρt

×
[
(1 − e−µ1t)V1(0, 0) + e−µ1tV1(1, 0)

]]
V t

2 (0, 0) = e−ρt
[
(1 − e−µ1t)V2(0, 0) + e−µ1tV2(1, 0)

]
.

Solving, numerically, the above equations for p̃t
1(0, 0) and

p̃t
2(0, 0) with the parameter values v = 1, ρ = 0.9, λ = 1, and

µ1 = 0.75, the conjecture p̃t
1(0, 0) < p̃t

2(0, 0) is verified when-
ever µ2 > 0.75 = µ1. In conclusion, the player with the highest
service rate will also have the highest indifference price due to
the higher prospect of future monopoly rents. This results in
inefficiency since, by assigning arrivals in state (0, 0) to the
server with the lowest service rate, there is higher probability
of service rejections.

VII. INCORPORATING DELAY SENSITIVITY

Up to this point, our model assumes that customers are not
sensitive to expected delays. While this could apply to settings
in which the disutility of delay is negligible when compared to

Fig. 1. Evolution of the estimated indifference prices for state (0, 0) with
K1 = 2, K2 = 4, and c ∈ {0.01, 0.05, 0.1}.

Fig. 2. Plots illustrate the evolution of the indifference prices for all states of
the system for the case K1 = K2 = 2 and for values of the delay cost ranging
from c = [0, 0.05, 0.1, . . . , 1].

the surplus associated with a service completion, it is of interest
to extend our setup to incorporate delay-sensitive customers. In
this section, we provide a numerical illustration of the effects
associated to incorporating time-sensitive customers.

A. Setup Revisited

We now revisit assumption A.2) in the basic setup for price-
based competition among queuing systems, as presented in
Section III.
A.2′Auctions take place every time customers arrive. Arriving

customers experience a delay cost c per unit of time. There-
fore, given a state x ∈ X and bids b = (b1, b2, . . . , bn) ∈
B = Πi[0, v], we define [1] to be the index associated with
the best offer, i.e.,

[1] = min
i

{
bi +

cxi

µi

}
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Fig. 3. Plots illustrate the evolution of the indifference prices for all states
of the system for the case K1 = 2, K2 = 4 and for delay costs ranging from
c = [0, 0.05, 0.1, . . . , 1].

where ties are randomly broken. Player’s i demand
Di(b, x) is defined as follows:

Di(b, x) =
{

1, if i = [1]
0, otherwise .

The price for service p∗(b) is defined as follows:

p∗(b) =
{

b[2], if [2] �= ∅

b[1], otherwise

where

[2] = min
i�=[1]

{
bi +

cxi

µi

}
.

Given the Markovian structure of pricing policies, the de-
finition of indifferent prices given in (3) remains unaltered.
The interplay between different pricing strategies and the ex-
pected delays is captured by the value-function definition in
(1) and (2).

B. Numerical Illustration

Consider a realization of the queuing system, defined by
the sequence of states {x1, x2, . . .}, with xk ∈ X for all k =
1, 2, . . . occurring at times {t1 < t2 < . . .} obtained through
simulation of policy π ∈ [0, v]|X |×n, with initial state x0. Let
{km}∞m=1 be the subsequence of system states corresponding

Fig. 4. Plots illustrate the evolution of the indifference prices for all states
of the system for the case K1 = 2, K2 = 4 and for delay costs ranging from
c = [0, 0.05, 0.1, . . . , 1].

to a new arrival. Given a roll-out horizon τ > 0, we define the
rollout estimate of the value function for state x = x0 ∈ X as

Ṽ π
i (x, τ) =

τ∑
j=1

e−ρ(tkj
)rπ

i (xkj )

where rπ
i (xkj ) = p∗(b)Di(b, xkj ) as defined in the previous

section. Using these approximations, player i can estimate its
indifference price by letting

p̂π
i (x) = Ṽ π

i (x, τ) − Ṽ π
i (x + ei, τ)

where ei is the unit vector in the ith dimension, defined for
all states xi < Ki. We note that this difference is motivated by
(3), for the definitions of reward and demand introduced in the
previous section.

Let π0 ∈ [0, v]|X |×n be an initial bidding policy, and defined,
recursively, as

πk+1(x) = max
{

0,min
{
v, (1 − γk)πk(x) + γkp̂

πk

i (x)
}}
(15)

for k = 1, 2, . . ., and the standard conditions
∑

k γk = ∞, and∑
k γ2

k < ∞, e.g., γk = (1/k). Clearly, any fixed point of this
recursion corresponds to an MPE. In Fig. 1, we show the
results of 100 iterations of the algorithm when applied to a
nonsymmetrical system with K1 = 2 and K2 = 4, showing the
apparent convergence of the indifference prices.

We applied our algorithm to a symmetrical system with
K1 = K2 = 2, an arrival rate of λ = 1, service rates of µ1 =
µ2 = 3/4, and a roll-out horizon τ = 100. In Fig. 2, we present
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the summary of different runs for values of the delay cost c
ranging from [0, 0.05, 0.10, . . . , 0.95, 1.0]. For each value of c,
100 iterations of the roll-out algorithm were carried out, and
the last set of indifferent prices, i.e., π100(x), is shown in the
figures for each possible state x ∈ {(0, 0), (1, 0), (0, 1), (1, 1)},
omitting those states where the indifference price is known in
advance. The experiment results reflect the symmetry of the
setup and also show that, although price increases with the
delay cost, the MPE is not necessarily efficient. Figs. 3 and 4
show a similar behavior: 1) the indifference prices increasing
with the delay cost and 2) the system is not efficient since the
queue with the lowest occupancy will always profit from letting
the other player’s queue fill up and realize the monopoly price
v; this is confirmed by the prices increasing in the other player’s
queue size (Fig. 3).

VIII. CONCLUSION

In this paper, we have developed a theoretical model that
captures many relevant features of an auction-based structure
for online trading of homogeneous services. A simple charac-
terization of MPE in terms of “indifference prices,” i.e., price
levels at which players are indifferent between committing
available capacity or withholding it from the market, reflects the
assessment of opportunity costs associated to available capacity
at a given point in time. Interestingly, strategic effects are
nonnegligible since these opportunity costs not only depend
on each firm’s available capacity at a given point in time
but also on the competitors’ available capacity. Therefore, we
have a market in which a firm’s pricing strategy determines,
partially, its competitors’ costs. This feature inevitably affects
social efficiency. We give a sufficient condition under which
systemwide performance in equilibrium is efficient. The incor-
poration of delay-sensitive demand and relaxing the assumption
on complete information about the state of the system are topics
of further research.
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